データシートサーチシステム
  Japanese  ▼
ALLDATASHEET.JP

X  

CS209AYDR14 データシート(PDF) 6 Page - ON Semiconductor

部品番号 CS209AYDR14
部品情報  Proximity Detector
Download  8 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
メーカー  ONSEMI [ON Semiconductor]
ホームページ  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

CS209AYDR14 データシート(HTML) 6 Page - ON Semiconductor

  CS209AYDR14 Datasheet HTML 1Page - ON Semiconductor CS209AYDR14 Datasheet HTML 2Page - ON Semiconductor CS209AYDR14 Datasheet HTML 3Page - ON Semiconductor CS209AYDR14 Datasheet HTML 4Page - ON Semiconductor CS209AYDR14 Datasheet HTML 5Page - ON Semiconductor CS209AYDR14 Datasheet HTML 6Page - ON Semiconductor CS209AYDR14 Datasheet HTML 7Page - ON Semiconductor CS209AYDR14 Datasheet HTML 8Page - ON Semiconductor  
Zoom Inzoom in Zoom Outzoom out
 6 / 8 page
background image
CS209A
http://onsemi.com
6
For this application it is recommended to use a core which
concentrates the magnetic field in only one direction. This
is accomplished very well with a pot core half. The next step
is to select a core material with low loss factor (inverse of Q).
The loss factor can be represented by a resistance in series
with the inductor which arises from core losses and is a
function of frequency.
The final step in obtaining a high Q inductor is the selection
of wire size. The higher the frequency the faster the decrease
in current density towards the center of the wire. Thus most
of the current flow is concentrated on the surface of the wire
resulting in a high AC resistance. LITZ wire is recommended
for this application. Considering the many factors involved,
it is also recommended to operate at a resonant frequency
between 200 and 700 kHz. The formula commonly used to
determine the Q for parallel resonant circuits is:
QP ^ R
2pfRL
where R is the effective resistance of the tank. The resistance
component of the inductor consists primarily of core losses
and “skin effect” or AC resistance.
The resonant capacitor should be selected to resonate with
the inductor within the frequency range recommended in
order to yield the highest Q. The capacitor type should be
selected to have low ESR: multilayer ceramic for example.
Detection distances vary for different metals. Following
are different detection distances for some selected metals
and metal objects relative to one particular circuit set−up:
Commonly Encountered Metals
Stainless Steel
0.101″
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Carbon Steel
0.125″
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Copper
0.044″
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aluminum
0.053″
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Brass
0.052″
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Coins
US Quarter
0.055″
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Canadian Quarter
0.113″
. . . . . . . . . . . . . . . . . . . . . . . . . .
1 German Mark
0.090″
. . . . . . . . . . . . . . . . . . . . . . . . . .
1 Pound Sterling
0.080″
. . . . . . . . . . . . . . . . . . . . . . . . . .
100 Japanese Yen
0.093″
. . . . . . . . . . . . . . . . . . . . . . . . .
100 Italian Lira
0.133″
. . . . . . . . . . . . . . . . . . . . . . . . . . .
Other
12 oz. soda can
0.087″
. . . . . . . . . . . . . . . . . . . . . . . . . . .
Note that the above is only a comparison among different
metals and no attempt was made to achieve the greatest
detection distance.
A different type of application involves, for example,
detecting the teeth of a rotating gear. For these applications
the capacitor on DEMOD should not be selected too small
(not below 1000 pF) where the ripple becomes too large and
not too large (not greater than 0.01 μF) that the response time
is too slow. Figure 6 for example shows the capacitor ripple
only and Figure 7 shows the entire capacitor voltage and the
output pulses for an 8−tooth gear rotating at about 2400 rpm
using a 2200 pF capacitor on the DEMOD pin.
Because the output stages go into hard saturation, a time
interval is required to remove the stored base charge
resulting in both outputs being low for approximately 3.0 μs.
(See Figure 3.)


同様の部品番号 - CS209AYDR14

メーカー部品番号データシート部品情報
logo
Cherry Semiconductor Co...
CS209AYDR14 CHERRY-CS209AYDR14 Datasheet
166Kb / 6P
   Proximity Detector
More results

同様の説明 - CS209AYDR14

メーカー部品番号データシート部品情報
logo
Cherry Semiconductor Co...
CS209A CHERRY-CS209A Datasheet
166Kb / 6P
   Proximity Detector
logo
ams AG
TSL2671 AMSCO-TSL2671 Datasheet
725Kb / 27P
   DIGITAL PROXIMITY DETECTOR
logo
TEXAS ADVANCED OPTOELEC...
TMD26723 TAOS-TMD26723 Datasheet
1Mb / 29P
   DIGITAL PROXIMITY DETECTOR
logo
ams AG
TSL26721 AMSCO-TSL26721 Datasheet
750Kb / 46P
   Digital Proximity Detector
TMD2672 AMSCO-TMD2672 Datasheet
1Mb / 29P
   DIGITAL PROXIMITY DETECTOR
logo
TEXAS ADVANCED OPTOELEC...
TMD26713 TAOS-TMD26713 Datasheet
1Mb / 29P
   DIGITAL PROXIMITY DETECTOR
logo
ams AG
TMD26721 AMSCO-TMD26721 Datasheet
1Mb / 29P
   DIGITAL PROXIMITY DETECTOR
TMD2671 AMSCO-TMD2671 Datasheet
1Mb / 29P
   DIGITAL PROXIMITY DETECTOR
TSL2672 AMSCO-TSL2672 Datasheet
749Kb / 31P
   DIGITAL PROXIMITY DETECTOR
logo
Silicon Laboratories
SI1102 SILABS-SI1102 Datasheet
139Kb / 16P
   OPTICAL PROXIMITY DETECTOR
More results


Html Pages

1 2 3 4 5 6 7 8


データシート ダウンロード

Go To PDF Page


リンク URL




プライバシーポリシー
ALLDATASHEET.JP
ALLDATASHEETはお客様のビジネスに役立ちますか?  [ DONATE ] 

Alldatasheetは   |   広告   |   お問い合わせ   |   プライバシーポリシー   |   リンク交換   |   メーカーリスト
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com