データシートサーチシステム
  Japanese  ▼
ALLDATASHEET.JP

X  

AD736AR データシート(PDF) 7 Page - Analog Devices

部品番号 AD736AR
部品情報  Low Cost, Low Power, True RMS-to-DC Converter
Download  8 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
メーカー  AD [Analog Devices]
ホームページ  http://www.analog.com
Logo AD - Analog Devices

AD736AR データシート(HTML) 7 Page - Analog Devices

  AD736AR Datasheet HTML 1Page - Analog Devices AD736AR Datasheet HTML 2Page - Analog Devices AD736AR Datasheet HTML 3Page - Analog Devices AD736AR Datasheet HTML 4Page - Analog Devices AD736AR Datasheet HTML 5Page - Analog Devices AD736AR Datasheet HTML 6Page - Analog Devices AD736AR Datasheet HTML 7Page - Analog Devices AD736AR Datasheet HTML 8Page - Analog Devices  
Zoom Inzoom in Zoom Outzoom out
 7 / 8 page
background image
AD736
REV. C
–7–
As shown, the dc error is the difference between the average of
the output signal (when all the ripple in the output has been
removed by external filtering) and the ideal dc output. The dc
error component is therefore set solely by the value of averaging
capacitor used-no amount of post filtering (i.e., using a very
large CF) will allow the output voltage to equal its ideal value.
The ac error component, an output ripple, may be easily re-
moved by using a large enough post filtering capacitor, CF.
In most cases, the combined magnitudes of both the dc and ac
error components need to be considered when selecting appro-
priate values for capacitors CAV and CF. This combined error,
representing the maximum uncertainty of the measurement is
termed the “averaging error” and is equal to the peak value of
the output ripple plus the dc error.
As the input frequency increases, both error components de-
crease rapidly: if the input frequency doubles, the dc error and
ripple reduce to 1/4 and 1/2 their original values, respectively,
and rapidly become insignificant.
AC MEASUREMENT ACCURACY AND CREST FACTOR
The crest factor of the input waveform is often overlooked when
determining the accuracy of an ac measurement. Crest factor is
defined as the ratio of the peak signal amplitude to the rms am-
plitude (C.F. = VPEAK/V rms). Many common waveforms, such
as sine and triangle waves, have relatively low crest factors (
≤2).
Other waveforms, such as low duty cycle pulse trains and SCR
waveforms, have high crest factors. These types of waveforms
require a long averaging time constant (to average out the long
time periods between pulses). Figure 6 shows the additional
error vs. crest factor of the AD736 for various values of CAV.
SELECTING PRACTICAL VALUES FOR INPUT
COUPLING (CC), AVERAGING (CAV) AND FILTERING
(CF) CAPACITORS
Table II provides practical values of CAV and CF for several
common applications.
Table II. AD737 Capacitor Selection Chart
Application
rms
Low
Max
CAV
CF
Settling
Input
Frequency Crest
Time*
Level
Cutoff
Factor
to 1%
(–3dB)
General Purpose
0–1 V
20 Hz
5
150
µF 10 µF 360 ms
rms Computation
200 Hz
5
15
µF1 µF 36 ms
0–200 mV 20 Hz
5
33
µF 10 µF 360 ms
200 Hz
5
3.3
µF1 µF 36 ms
General Purpose
0–1 V
20 Hz
None
33
µF 1.2 sec
Average
200 Hz
None
3.3
µF 120 ms
Responding
0–200 mV 20 Hz
None
33
µF 1.2 sec
200 Hz
None
3.3
µF 120 ms
SCR Waveform
0–200 mV 50 Hz
5
100
µF 33 µF 1.2 sec
Measurement
60 Hz
5
82
µF 27 µF 1.0 sec
0–100 mV 50 Hz
5
50
µF 33 µF 1.2 sec
60 Hz
5
47
µF 27 µF 1.0 sec
Audio
Applications
Speech
0–200 mV 300 Hz
3
1.5
µF 0.5 µF 18 ms
Music
0–100 mV 20 Hz
10
100
µF 68 µF 2.4 sec
*Settling time is specified over the stated rms input level with the input signal increasing
from zero. Settling times will be greater for decreasing amplitude input signals.
RMS MEASUREMENT – CHOOSING THE OPTIMUM
VALUE FOR CAV
Since the external averaging capacitor, CAV, “holds” the recti-
fied input signal during rms computation, its value directly af-
fects the accuracy of the rms measurement, especially at low
frequencies. Furthermore, because the averaging capacitor ap-
pears across a diode in the rms core, the averaging time constant
will increase exponentially as the input signal is reduced. This
means that as the input level decreases, errors due to nonideal
averaging will reduce while the time it takes for the circuit to
settle to the new rms level will increase. Therefore, lower input
levels allow the circuit to perform better (due to increased aver-
aging) but increase the waiting time between measurements.
Obviously, when selecting CAV, a trade-off between computa-
tional accuracy and settling time is required.
Figure 17. AD736 Average Responding Circuit
RAPID SETTLING TIMES VIA THE AVERAGE
RESPONDING CONNECTION (FIGURE 17)
Because the average responding connection does not use the
CAV averaging capacitor, its settling time does not vary with in-
put signal level; it is determined solely by the RC time constant
of CF and the internal 8 k
Ω resistor in the output amplifier’s
feedback path.
DC ERROR, OUTPUT RIPPLE, AND AVERAGING
ERROR
Figure 18 shows the typical output waveform of the AD736 with
a sine-wave input applied. As with all real-world devices, the
ideal output of VOUT = VIN is never exactly achieved; instead,
the output contains both a dc and an ac error component.
Figure 18. Output Waveform for Sine-Wave Input Voltage


同様の部品番号 - AD736AR

メーカー部品番号データシート部品情報
logo
Analog Devices
AD736AR-REEL AD-AD736AR-REEL Datasheet
480Kb / 20P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD736AR-REEL7 AD-AD736AR-REEL7 Datasheet
480Kb / 20P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD736ARZ AD-AD736ARZ Datasheet
480Kb / 20P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD736ARZ-R7 AD-AD736ARZ-R7 Datasheet
480Kb / 20P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD736ARZ-RL AD-AD736ARZ-RL Datasheet
480Kb / 20P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
More results

同様の説明 - AD736AR

メーカー部品番号データシート部品情報
logo
Analog Devices
AD8436 AD-AD8436_13 Datasheet
747Kb / 24P
   Low Cost, Low Power, True RMS-to-DC Converter
REV. B
AD737 AD-AD737 Datasheet
149Kb / 8P
   Low Cost, Low Power, True RMS-to-DC Converter
REV. C
AD736 AD-AD736_15 Datasheet
480Kb / 20P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD737 AD-AD737_15 Datasheet
499Kb / 24P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD8436 AD-AD8436_17 Datasheet
762Kb / 21P
   Low Cost, Low Power, True RMS-to-DC Converter
AD737 AD-AD737_12 Datasheet
499Kb / 24P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
AD736 AD-AD736_12 Datasheet
480Kb / 20P
   Low Cost, Low Power, True RMS-to-DC Converter
Rev. I
logo
Burr-Brown (TI)
4341 BURR-BROWN-4341 Datasheet
331Kb / 4P
   LOW COST TRUE RMS-TO-DC CONVERTER
logo
Analog Devices
AD636 AD-AD636 Datasheet
157Kb / 8P
   Low Level, True RMS-to-DC Converter
REV. B
AD636 AD-AD636_15 Datasheet
677Kb / 17P
   Low Level, True RMS-to-DC Converter
Rev. E
More results


Html Pages

1 2 3 4 5 6 7 8


データシート ダウンロード

Go To PDF Page


リンク URL




プライバシーポリシー
ALLDATASHEET.JP
ALLDATASHEETはお客様のビジネスに役立ちますか?  [ DONATE ] 

Alldatasheetは   |   広告   |   お問い合わせ   |   プライバシーポリシー   |   リンク交換   |   メーカーリスト
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com